
Compilers
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2024 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Computer Architecture and Assembler
Overview

© 2024 Arthur Hoskey. All
rights reserved.

Von Neumann Architecture

Von Neumann Architecture

 Standard architecture for most computers today.

 John von Neumann developed it in the late
1940’s.

Major guidelines for Von Neumann Architecture:

 Memory holds both data and programs.

 Memory is addressed linearly.

 Memory is addressed by the location number
without regard to the data contained within.

© 2024 Arthur Hoskey. All
rights reserved.

Von Neumann Architecture

Von Neumann also defined functional organization
of a computer to be made up of the following:

 Control unit – Executes instructions.

 Arithmetic/Logic unit (ALU) – Performs arithmetic
and logical calculations.

 Memory (RAM)

CPU = Control Unit + ALU

© 2024 Arthur Hoskey. All
rights reserved.

CPU

CPU

CPU

Control Unit

ALU

CPU =

Control Unit

+ ALU

Note: There are some details that are left out, but this is the basic setup.

© 2024 Arthur Hoskey. All
rights reserved.

CPU – Control Unit

Control Unit

 Controls and interprets the execution of
instructions.

 Follows a sequence of actions that correspond to
the fetch-execute instruction cycle.
◦ Get instruction from memory

◦ Move data and addresses from one part of the CPU to
another.

© 2024 Arthur Hoskey. All
rights reserved.

CPU - Arithmetic Logic Unit

Arithmetic Logic Unit (ALU)

 Calculations take place here.

 Works as follows:
◦ Data gets moved into the ALU (into ALU temporary

storage).

◦ Calculations are performed.

◦ Result data is moved out of the ALU to register(s).

© 2024 Arthur Hoskey. All
rights reserved.

Memory

Memory (RAM)

1

0

2

n

Memory is

linear and

starts from

address 0

© 2024 Arthur Hoskey. All
rights reserved.

Register

Register

 Single permanent storage location within the
CPU.

 Each register usually has a defined purpose
(dependent on the particular CPU).

 For example:
◦ Program counter register (PC).

◦ Holds the address of the current instruction being
processed.

 General registers can be used for anything. We
will use r1, r2, etc. to refer to general registers.

© 2024 Arthur Hoskey. All
rights reserved.

CPU Showing Some Registers

CPU Showing Some Registers

 PC – Program Counter. Address of the current instruction

 r1 – General purpose register.

 r2 – General purpose register.

 Note: CPUs differ on the number of registers they contain as well as the
names of those registers.

CPU

Registers

Control Unit
(gets, executes instr)

ALU
(add, logic, etc…)

PC

r1 r2

© 2024 Arthur Hoskey. All
rights reserved.

Von Neumann Architecture

CPU

Registers

Control UnitALU

PC

r1 r2

Memory (RAM)

1

0

2

n
Question

How does data go back and forth

from the CPU to Memory?

???

© 2024 Arthur Hoskey. All
rights reserved.

Von Neumann Architecture

Memory (RAM)

1

0

2

n
A bus moves data back and

forth between places on the

computer

Bus

© 2024 Arthur Hoskey. All
rights reserved.

CPU

Registers

Control UnitALU

PC

r1 r2

Bus

Bus

 Bus – A group of electrical conductors suitable
for carrying computer signals from one location
to another.

 The bus is part of the motherboard.

 Used to move "data" around the computer.

© 2024 Arthur Hoskey. All
rights reserved.

Assembly Language

 Now we will go over what happens when
some assembly instructions run.

© 2024 Arthur Hoskey. All
rights reserved.

Load Instruction

Load

 Loads a piece of data from memory into a
register.

 General format of load:
◦ load <register>, <memory location>

 Here is a load instruction that will get
data from memory address 3 and put it in
register r2:
◦ load r2, 3

© 2024 Arthur Hoskey. All
rights reserved.

System Diagram

CPU

Registers

Control UnitALU

r1 – r2 –

Memory (RAM)

1 - <data here>

0 - <data here>

2 - <data here>

5 - <data here>

Bus

3 - <data here>

4 - <data here>

Note

RAM only contains 6 locations for

this example (addresses are 0-5)

Only showing two general

registers in the CPU

© 2024 Arthur Hoskey. All
rights reserved.

Load Instruction

Memory (RAM)

1 - 763

0 - 2114

2 - 9342

5 - 7732

Bus

3 - 5231

4 - 3668

What happens when this instruction

runs?

load r2, 3

© 2024 Arthur Hoskey. All
rights reserved.

CPU

Registers

Control UnitALU

r1 –
0

r2 –
0

Load Instruction

Memory (RAM)

1 - 763

0 - 2114

2 - 9342

5 - 7732

Bus

3 - 5231

4 - 3668

What happens when this instruction

runs?

load r2, 3

© 2024 Arthur Hoskey. All
rights reserved.

CPU

Registers

Control UnitALU

r1 –
0

r2 –
5231

Store Instruction

Store

 Stores a piece of data from a register into
memory.

 General format of load:
◦ store <register>, <memory location>

 Here is a load instruction that will get
data from register r1 and put it in
memory address 4:
◦ store r1, 4

© 2024 Arthur Hoskey. All
rights reserved.

Store Instruction

Memory (RAM)

1 - 763

0 - 2114

2 - 9342

5 - 7732

Bus

3 - 5231

4 - 3668

What happens when this instruction

runs?

store r1, 4

© 2024 Arthur Hoskey. All
rights reserved.

CPU

Registers

Control UnitALU

r1 –
0

r2 –
5231

Store Instruction

Memory (RAM)

1 - 763

0 - 2114

2 - 9342

5 - 7732

Bus

3 - 5231

4 - 0

What happens when this instruction

runs?

store r1, 4

© 2024 Arthur Hoskey. All
rights reserved.

CPU

Registers

Control UnitALU

r1 –
0

r2 –
5231

Add Instruction

Add

 Adds data from two registers and stores
the result in a register.

 General format of load:
◦ add <register>, <register>, <register>

 Here is an add instruction that will get
data from registers r1 and r2 and put the
result in register r3:
◦ add r1, r2, r3

© 2024 Arthur Hoskey. All
rights reserved.

Add Instruction

Memory (RAM)

1 - 763

0 - 2114

2 - 9342

5 - 7732

Bus

3 - 5231

4 - 3668 What happens when this instruction

runs?

add r1, r2, r3

© 2024 Arthur Hoskey. All
rights reserved.

CPU

Registers

Control UnitALU

r1 –
400

r2 –
200

r3 –
0

r4 –
0

Add Instruction

Memory (RAM)

1 - 763

0 - 2114

2 - 9342

5 - 7732

Bus

3 - 5231

4 - 3668 What happens when this instruction

runs?

add r1, r2, r3

© 2024 Arthur Hoskey. All
rights reserved.

CPU

Registers

Control UnitALU

r1 –
400

r2 –
200

r3 –
600

r4 –
0

Add registers

r1 and r2 and

put result in

r3

+

Inc Instruction

Inc

 Increments the value in a register (add 1
to the value in the register).

 General format of load:
◦ inc <register>

 Here is an increment instruction for
register r1:
◦ inc r1

© 2024 Arthur Hoskey. All
rights reserved.

Inc Instruction

Memory (RAM)

1 - 763

0 - 2114

2 - 9342

5 - 7732

Bus

3 - 5231

4 - 3668 What happens when this instruction

runs?

inc r1

© 2024 Arthur Hoskey. All
rights reserved.

CPU

Registers

Control UnitALU

r1 –
400

r2 –
200

r3 –
0

r4 –
0

Inc Instruction

Memory (RAM)

1 - 763

0 - 2114

2 - 9342

5 - 7732

Bus

3 - 5231

4 - 3668 What happens when this instruction

runs?

inc r1

© 2024 Arthur Hoskey. All
rights reserved.

CPU

Registers

Control UnitALU

r1 –
401

r2 –
200

r3 –
0

r4 –
0

Increments

register r1

End of Slides

 End of Slides

© 2024 Arthur Hoskey. All
rights reserved.

	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Von Neumann Architecture
	Slide 4: Von Neumann Architecture
	Slide 5: CPU
	Slide 6: CPU – Control Unit
	Slide 7: CPU - Arithmetic Logic Unit
	Slide 8: Memory
	Slide 9: Register
	Slide 10: CPU Showing Some Registers
	Slide 11: Von Neumann Architecture
	Slide 12: Von Neumann Architecture
	Slide 13: Bus
	Slide 14: Assembly Language
	Slide 15: Load Instruction
	Slide 16: System Diagram
	Slide 17: Load Instruction
	Slide 18: Load Instruction
	Slide 19: Store Instruction
	Slide 20: Store Instruction
	Slide 21: Store Instruction
	Slide 22: Add Instruction
	Slide 23: Add Instruction
	Slide 24: Add Instruction
	Slide 25: Inc Instruction
	Slide 26: Inc Instruction
	Slide 27: Inc Instruction
	Slide 28: End of Slides

