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Today’s Lecture

 Computer Architecture and Assembler 
Overview
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Von Neumann Architecture

Von Neumann Architecture

 Standard architecture for most computers today.

 John von Neumann developed it in the late 
1940’s.

Major guidelines for Von Neumann Architecture:

 Memory holds both data and programs.

 Memory is addressed linearly.

 Memory is addressed by the location number 
without regard to the data contained within.
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Von Neumann Architecture

Von Neumann also defined functional organization 
of a computer to be made up of the following:

 Control unit – Executes instructions.

 Arithmetic/Logic unit (ALU) – Performs arithmetic 
and logical calculations.

 Memory (RAM)

CPU = Control Unit + ALU
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CPU

CPU

CPU
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CPU = 

Control Unit 

+ ALU 

Note: There are some details that are left out, but this is the basic setup.
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CPU – Control Unit

Control Unit

 Controls and interprets the execution of 
instructions.

 Follows a sequence of actions that correspond to 
the fetch-execute instruction cycle.
◦ Get instruction from memory

◦ Move data and addresses from one part of the CPU to 
another.
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CPU - Arithmetic Logic Unit

Arithmetic Logic Unit (ALU)

 Calculations take place here.

 Works as follows:
◦ Data gets moved into the ALU (into ALU temporary 

storage).

◦ Calculations are performed.

◦ Result data is moved out of the ALU to register(s).
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Register

Register

 Single permanent storage location within the 
CPU.

 Each register usually has a defined purpose 
(dependent on the particular CPU).

 For example:
◦ Program counter register (PC). 

◦ Holds the address of the current instruction being 
processed.

 General registers can be used for anything. We 
will use r1, r2, etc. to refer to general registers.
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CPU Showing Some Registers

CPU Showing Some Registers

 PC – Program Counter. Address of the current instruction

 r1 – General purpose register.

 r2 – General purpose register.

 Note: CPUs differ on the number of registers they contain as well as the 
names of those registers.

CPU

Registers

Control Unit
(gets, executes instr)

ALU
(add, logic, etc…)

PC

r1 r2
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Von Neumann Architecture

CPU
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Question

How does data go back and forth 

from the CPU to Memory?

???
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Von Neumann Architecture

Memory (RAM)
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A bus moves data back and 

forth between places on the 

computer

Bus
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Bus

Bus

 Bus – A group of electrical conductors suitable 
for carrying computer signals from one location 
to another.

 The bus is part of the motherboard.

 Used to move "data" around the computer.
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Assembly Language

 Now we will go over what happens when 
some assembly instructions run.
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Load Instruction

Load

 Loads a piece of data from memory into a 
register.

 General format of load:
◦ load <register>, <memory location>

 Here is a load instruction that will get 
data from memory address 3 and put it in 
register r2:
◦ load r2, 3
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System Diagram

CPU

Registers

Control UnitALU

r1 – r2 –

Memory (RAM)

1 - <data here>

0 - <data here> 

2 - <data here> 

5 - <data here> 

Bus

3 - <data here> 

4 - <data here> 

Note

RAM only contains 6 locations for 

this example (addresses are 0-5)

Only showing two general 

registers in the CPU
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Load Instruction

Memory (RAM)

1 - 763 

0 - 2114 

2 - 9342 

5 - 7732 

Bus

3 - 5231 

4 - 3668 

What happens when this instruction 

runs?

load r2, 3
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Load Instruction
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Store Instruction

Store

 Stores a piece of data from a register into 
memory.

 General format of load:
◦ store <register>, <memory location>

 Here is a load instruction that will get 
data from register r1 and put it in 
memory address 4:
◦ store r1, 4
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Store Instruction

Memory (RAM)

1 - 763 

0 - 2114 

2 - 9342 

5 - 7732 

Bus

3 - 5231 

4 - 3668 

What happens when this instruction 

runs?

store r1, 4
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Store Instruction

Memory (RAM)

1 - 763 

0 - 2114 

2 - 9342 

5 - 7732 

Bus

3 - 5231 

4 - 0 

What happens when this instruction 

runs?

store r1, 4
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Add Instruction

Add

 Adds data from two registers and stores 
the result in a register.

 General format of load:
◦ add <register>, <register>, <register>

 Here is an add instruction that will get 
data from registers r1 and r2 and put the 
result in register r3:
◦ add r1, r2, r3
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Add Instruction

Memory (RAM)

1 - 763 

0 - 2114 

2 - 9342 

5 - 7732 

Bus

3 - 5231 
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runs?
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Add Instruction
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© 2024 Arthur Hoskey. All 
rights reserved.

CPU

Registers

Control UnitALU

r1 –
400

r2 – 
200

r3 –
600

r4 –
0

Add registers 

r1 and r2 and 

put result in 

r3

+



Inc Instruction

Inc

 Increments the value in a register (add 1 
to the value in the register).

 General format of load:
◦ inc <register>

 Here is an increment instruction for 
register r1:
◦ inc r1
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Inc Instruction

Memory (RAM)

1 - 763 

0 - 2114 

2 - 9342 

5 - 7732 

Bus

3 - 5231 

4 - 3668 What happens when this instruction 

runs?

inc r1

© 2024 Arthur Hoskey. All 
rights reserved.

CPU

Registers

Control UnitALU

r1 –
400

r2 – 
200

r3 –
0

r4 –
0



Inc Instruction
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inc r1
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End of Slides

 End of Slides
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